StateMod Program Description

Maintenance Training Session #1 April 24-25, 2014

Programming Philosophy (1/2)

• Help the user

- Input data units
- Input data detail (average, monthly, daily)
- Backward compatible
 - Support old data formats
- Check input for reasonableness
 - Catch for potential problems before trying to simulate
 - Particularly for operating rules
- Detailed checking
 - Control variable (ichk) offers over 25 options
- Allow major control (on/off) without revising input
 - Control variables for wells, variable efficiency, time period, output units

Programming Philosophy (2/2)

- Minimize memory requirement
 - Read time series once per year
 - Print output to a binary file every time step
- Maximize local variables
 - Initialize data to scalars every time step
 - Dem = Demand(I,j)
- Performance is critical
- Help user/programmer find problems
- Once water is allocated, do not take away

Memory

- Two files of common block data
 - 1. Common.inc
 - All common blocks except daily
 - 2. Daily.inc
 - Daily data only
- Subroutine StateM
 - Contains current limits of model
 - Used unique values to allow easy replacement

Typical Operating Rule Structure (1/2) (see DivcarL)

- Three components prior to code:
- 1. Program description
 - DivcarL; It simulates a type 45 operating rule for carrier structures with Losses
- 2. Update History
 - rrb 2007/04/16 Revised to allow various owners to share in water supply and capacity
- 3. Documentation
 - CallBy calling routine
 - IW Overall water right order
 - L2 Location of operation right in opr right table

Typical Operating Rule Structure (2/2) (see DivcarL)

- Code identifies steps associated with key steps
 - Step 1 Initialize
 - Step 2 Exit if not on this month
 - Step 3 Set Source data
- Detailed Output
 - Allows detailed results if requested

Flow Charts

- Main see Statem
- Baseflow see Virgin
- Simulate see Execut
- Report see Report
- Data check see Xdebug

Other (1/2)

- Database of input

 Easier maintenance
- Memory limits

Western slope was near limit of old compilers

- Operating rule redundancy
 Backward compatibility
- Documentation

 Always room for improvement
- Daily return flows

 If day 1 = 0, performance can be significantly improved

Other (2/2)

- Calibration in steps
 - Run in a monthly time step
 - Begin with stream and diversions
 - Add reservoirs, wells, plans, ...
- Baseflows
 - Understand why negative base flows may occur
 - Eliminate them if possible
- Simulate
 - Limit degrees of freedom
 - Fix demand and reservoir data
 - Verify water right and operating rule operations
 - Sequentially free reservoirs & demands
 - Check
 - Monitor to/from ground water storage
 - Monitor water balance
 - Review output